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Palladium (and nickel)-catayzed cross-coupling reactions have (1.1) Me_ Me

emerged as the premier methods for construction of carbon—carbon
(and carbon—heteroatom) bonds between unsaturated organic moieties.
The historical development, diversification, and applications of the
myriad variants of this process are amply chronicled in recent
monographs and authoritative volumes* The generaly accepted
mechanism for these trangition-metal -catalyzed cross-coupling reactions
involves (1) oxidative addition to an electrophilic halide or pseudo-
halide, (2) transmetaation from an organometalic donor, and (3)
reductive elimination to generate a new C—X bond. Although the
oxidative addition of an organic halide to a Pd(0) complex is common
among most coupling reactions, the transmeta ation step is distinctive
to the organometallic donor employed. The transmetalation of orga-
nostannanes has been extensively studied but is gtill a matter of some
debate.® These transfers have been suggested to follow an intermo-
lecular S:2 mechanism by means of stereochemical models. Similarly,
organosilane transmetalations can proceed via either a four-centered,
closed transition structure (retentive) or an acyclic, open process
(invertive).® Cross-coupling reactions of organoboranes are highly base
dependent, and a pre-coordination of the transferring agent with the
transition meta followed by delivery has been proposed for the
transmetalation step.* Although kinetic studies have provided inde-
pendent evidence for these pathways, the ability to isolate and
characterize pre-transmetaation precursorsis needed to unambiguoudy
establish the course of palladium-catalyzed cross-coupling reactions.>©

Recent kinetic investigations from these laboratories on the mechanism
of paladium-catalyzed cross-coupling reactions with akenyl(dimethyl)-
silanols’ revedled that the transmetalation step is dependent on the
reaction conditions. Cross-coupling of (E)-dimethyl(1-heptenyl)silanol
under “classical activation” & by tetrabutylammonium fluoride proceeds
via a pentacoordinate siliconate complex that engagesin abimolecular
transmetalation with the organoPd(I1)—X acceptor.®® However, in a
second mechanistic study, the observation of saturation kinetics
suggested that, upon silanol deprotonation, the resulting silanolate (iia)
forms an adduct (iiia) with the organoPd(I1)—X intermediate (i) from
which (turnover-limiting) transmetal ation occurs spontaneoudy (Figure
1.1).%° Because thislatter conclusion violated the reigning dogmathat
transmetalation from silicon to palladium required an anionic siliconate
species® we sought to independently document this new pathway
through the isolation and characterization of the palladium silanolate
complex and establish the mechanistic relevance of this intermediate.

The unexpectedly facile transmetalation from the putative
akenyl(dimethyl)Si—O—Pd(aryl) speciesiiia precluded itsisolation
and demonstration of its kinetic behavior. However, we hypothesized
that such an intermediate might be isolable by employing an aryisil-
anolate as the nucleophilic partner because cross-coupling reactions
of these speciesrequire elevated temperatures and proceed viaa dower
transmetalation step.’® Moreover, the use of strongly coordinating
phosphine ligands might aso stabilize the intermediate iiib and alow
for its isolation. Fortunately, both of these requirements are met in a
recent disclosure from these |aboratories which reported the cross-
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Figure 1. Mechanistic proposal for the coupling of akenyl- and aryldi-
methylsilanolates.

coupling of arylsilanolates with aryl haides using big(tri-tert-bu-
tyl)phosphine palladium(0).** The isolation of stable, T-shaped com-
plexes of arylpalladium halides and alkoxides ligated with (t-Bu);P™
suggested that the arylsilanolate complexes could also be sufficiently
stable for isolation. We report herein the isolation and characterization
of astable (8-Si-4) complex containing a Pd—O—Si linkage that has
dlowed the identification of two distinct mechanistic pathways for
the cross-coupling of arylsilanolates.

Firg;, to vouchsafe that the arylsilanolate cross-coupling was proceeding
in atransmetaation-limiting regime, we determined the rate equation for
the cross-coupling of potassum (4-methoxyphenyl)dimethyl silanolate
(K*17) with 1-bromo-4-fluorobenzene (2) catdyzed by (t-BusP),Pd. The
partid order in each component in the reaction was determined individually
a 95 °C in toluene (Scheme 1) usng °F NMR andysis. Kingtic rates
were determined from the dope of the plot of the loss of aryl bromide
over time as determined through >3 half-lives™®
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The partid order in Slanolate was obtained by comparison of theinitid
rates of consumption of aryl bromide versus 75, 150, and 300 mM
concentrations of K™1~. An overlay of the linear plots of the kinetic data
clearly shows no effect on the concentration of K™1~ and establishes
zeroth-order behavior for this component. Next, the rate dependence on
[2] wes amilarly established to be zeroth order using concentrations of
100, 200, and 400 mM for this component. Findly, the rate dependence
on the amount of the paladium catalyst was determined by comparison
of the rate constant (kys) Versus 0.05, 0.10, 0.15, and 0.20 equiv of (t-
BusP),Pd a 100 mM in 2. A positive dope of 0.979, obtained from alog
plot of kys Versus [Pd], is condstent with afirst-order dependence of the
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obsarved rate constant on the concentration of paladium. Thus, the overal
rate equation for the reaction of K1~ with 2 catdyzed by (t-BusP),Pd is
shown in eq 1 (with arate of 1.06 x 1072 mM s™3). This rate equation
matches that of the akenylsilanolates reported previoudy,® and we thus
conclude thet here, as well, a turnover-limiting transmetalation from an
arylpdladium(l1) intermediateistaking place. However, thisrate equation
cannot differentiate between direct tranametdation via iiib or activated
transmetalation viaivb (Figure 1.2).* Accordingly, if transmetdation is
indeed the turnover-limiting step, then either arylpaladium(l1) slanolate
complex iiib or ivb should be detectable. However, 3P NMR andysis of
the reaction mixtures showed that the predominant phosphine-containing
specieswasthe PdL, catayst (0 4P, 85.4 ppm).*® A plausible explanation
for this behavior isthat the signd for the paladium sllanolate complex is
broadened a devated temperatures and isnot visible Thus, to gainingght
into the individua geps in the cadytic cycle, our atention shifted to
investigating these events under stoichiometric conditions.

—d[2]/0t = kp{K'1172°  withky, = KPA*® (1)

Theindependent synthesis of the proposed intermediaeiiib began with
the preparation of the oxidative addition complex.*** Tresting (t-BusP).Pd
with an excess of 2 resulted in the formation of the T-shaped, monomeric
complex (t-BusP)(4-FCeHa4)PdBr (4), which could be isolated and spec-
troscopically characterized. Next, the digplacement step was Smulated by
adding an equimolar quantity of K™1~ to a solution of 4 in toluene.
Ingpection of both the 3P and °F NMR spectra of the mixture revealed
no observable changes of the diagnostic resonances. Even after 30 min,
only asingle species was present that appeared to be the starting complex
4.1® However, inspection of the *H NMR spectrum of this solution revesled
that the chemicd shift of the methyl groups on silicon had changed and
that two new aryl proton sgnds gppeared. This new species was
spectroscopicaly identified as the proposed arylpaladium(ll) slanolate
complex 5.

Ultimately, the structure of adduct 5 was confirmed by isolation
and single-crystal X-ray analysis (Figure 2).*2“*"2 The Pd(1)—O(1)
bond length (2.02 A) is similar to those previously observed for
palladium(11) silanolates.™® Furthermore, the Si(1)—O(1) bond length
is typical for slanolates, which suggests that the ligand effect at the
palladium center is not as substantial as in other bisphosphine
palladium(ll) silanolate complexes®™ A wesk agostic interaction
between one of the H atoms of at-Bu methyl group and the palladium
is noted. In addition, the Pd(1)—0O(1)—Si(1) angle of 1285° is
considerably more acute compared to those in other known palla-
dium(I1)*® and platinum(11)® silanolates, and the nonbonded distance
between the silicon-bearing ipso carbon and the palladium atom (3.70
A) hintsto awesk interaction that anticipates the transmetal ation event.

With the desired paladium(l1) slanolate complex in hand, we were
poised to study the transmetdation process. Smply heating complex 5

Figure 2. X-ray crystal structure of complex 5. Hydrogens are removed
for clarity.
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(formed in situ) in toluene a 50 °C resulted in the formation of the biaryl
product in 80—90% yields with concomitant formation of PdL, (Scheme
2).1920 The thermd transmetalation process followed a first-order decay
With kys = 5.0 x 10~* s, Because the garting paladium catalyst hasa
2:1 ligand/paladium ratlo the gtoichiometric transmetdaion was per-
formed in the presence of t-BugP to establish if a partid order in ligand
could be detected aswell. Hegting asolution of complex 5 in the presence
of 1.0 and 5.0 equiv of t-BusP led to clean reactions with rate congtants
of 47 x 10 *and 4.9 x 10*s %, respectively. The Similar rate condants
for the thermd reaction at varying concentrations of free phosphine dearly
indicate a zeroth-order concentration dependence for the ligand. These
data suggest that phosphine dissodiation is not required for transmetdation
and that the arene smply trandfers to the open coordination site on
paladium directly. These experiments provide further evidence of an
unactivated, thermal transmetalation pathway for slicon-based cross-
coupling reections.

Scheme 2
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For the kinetic studies described above, the palladium(l1) silanolate
complex was generated in situ for ease of manipulation. However, in
a few instances the rapid formation of biaryl products was observed
at room temperature. To elucidate the origin of these anomaloudly fast
reactions, complex 5 was treated with K*1~ (1.0 equiv), and 3 was
formed in excellent yield (>90%) at room temperature! Because the
catalytic reaction is necessarily performed with a large excess of
silanolate with respect to paladium, a kinetic study was undertaken
to compare the rates of transmetdation of these different processes.
Therefore, treating 5 with 1.0 equiv of K*1™ at 50 °C afforded the
biaryl product with kyps = 5.0 x 1073 571, This observed rate constant
corresponds to a 10-fold increase oorrpared to the thermal process
established above. These data suggest that an acti vation-type pathway
via a 10-S-5 complex may also be operative.

If, in fact, the Slanolate is opening a pathway for activated transmeta:
lation, then modulaing the nucleophilicity of the arylsilanolate should
manifest in an observable change in rate. Thus, when the cesum st of
1 was employed in combination with 5 a 50 °C, product formation was
0 fad that the rate could not be measured. To compare the rates of
tranametdation usng different slanolaies, the reaction was instead
performed at room temperature (21 °C). Scheme 3 clearly shows that
Cs"1™ leadsto amore rapid consumption of 5 to afford the unsymmetrical
biaryl product. In fact, the rate constant for the Cst1-induced reaction
was 4.5 times larger than that for K™1™. These data suggest that the
increased nucleophilicity of the arylslanolate playsarolein the formation
of the 10-Si-5 sliconate intermediate. Furthermore, the kinetic dependence
on[Cs'17] a 6.6, 125, and 25 mM was determined by comparing the
rate congtants for the reection in Scheme 3. A log plot of kys versus

Scheme 3
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Figure 3.

concentration clearly shows a firg-order dependence and provides ad-
ditiona support for the activated pathway.?* Once the palladium(ll)
Slanolate is formed from afast displacement step, a second molecule of
Cs"1 isrequired to activate the sllicon atom toward transmetaaion.

By combining the results from both the kinetic studies and the
stoichiometric experiments, a detailed mechanism for the cross-
coupling of arylsilanolates can be formulated that illustrates how both
thermal and anionic pathways can operate simultaneoudy (Figure 3).
To initiate the cycle (green), oxidative addition occurs directly from
(t-BusP),Pd to generate the monomeric T-shaped complex, ib.? Rapid
displacement of the hdide occurs in which the key Pd—O—Si moiety
isforged with loss of the M*X ™~ salt. Now poised for transmetalation,
iiib can proceed down two independent pathways that involve either
(2) athermal intramolecular transmetalation (8-Si-4, depicted in blue)
or (2) an anionically activated pathway involving the formation of a
hypervaent siliconate (ivb, 10-Si-5, depicted in red). Because under
catalytic conditions an excess of silanolate is employed, we conclude
that the cross-coupling likely proceeds via the activation pathway.

In conclusion, the mechanistic landscape of the cross-coupling
of arylsilanolates with aryl halides has been refined. The isolation
and characterization of a palladium silanolate complex alowed for
the discovery of both thermal and anionic mechanistic pathways
for transmetal ation from silicon to palladium. The ability to isolate
palladium silanolate intermediates will enable further studies on
the molecular details of the transmetalation event.

Mechanism for the cross-coupling of arylsilanolates.
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